Anisotropy in the interaction of ultracold dysprosium.
نویسندگان
چکیده
The nature of the interaction between ultracold atoms with a large orbital and spin angular momentum has attracted considerable attention. It was suggested that such interactions can lead to the realization of exotic states of highly correlated matter. Here, we report on a theoretical study of the competing anisotropic dispersion, magnetic dipole-dipole, and electric quadrupole-quadrupole forces between two dysprosium atoms. Each dysprosium atom has an orbital angular momentum of L = 6 and a magnetic moment of μ = 10 μ(B). We show that the dispersion coefficients of the ground state adiabatic potentials lie between 1865 a.u. and 1890 a.u., creating a non-negligible anisotropy with a spread of 25 a.u. and that the electric quadrupole-quadrupole interaction is weak compared to the other interactions. We also find that for interatomic separations R < 50a(0) both the anisotropic dispersion and magnetic dipole-dipole potential are larger than the atomic Zeeman splittings for external magnetic fields of order 10 G to 100 G. At these separations the atomic angular momentum can be reoriented. We finish by describing two scattering models for these inelastic m-changing collisions. A universal scattering theory is used to model loss due to the anisotropy in the dispersion and a Born approximation is used to model losses from the magnetic dipole-dipole interaction for the (164)Dy isotope. These models find loss rates that are of the same order of magnitude as the experimental value.
منابع مشابه
Mixed triplet and singlet pairing in ultracold multicomponent fermion systems with dipolar interactions
The symmetry properties of the Cooper pairing problem for multicomponent ultracold dipolar molecular systems are investigated. The dipolar anisotropy provides a natural and robust mechanism for both triplet and singlet Cooper pairing to first order in the interaction strength. With a purely dipolar interaction, the triplet pz-like polar pairing is the most dominant. A short-range attractive int...
متن کاملSpectroscopy of a narrow-line laser-cooling transition in atomic dysprosium
The laser cooling and trapping of ultracold neutral dysprosium has been demonstrated recently using the broad, open, 421-nm cycling transition. Narrow-line magneto-optical trapping of Dy on longer wavelength transitions would enable the preparation of ultracold Dy samples suitable for loading optical dipole traps and subsequent evaporative cooling. We have identified the closed 741-nm cycling t...
متن کاملTrapping ultracold dysprosium: a highly magnetic gas for dipolar physics.
Ultracold dysprosium gases, with a magnetic moment 10 times that of alkali atoms and equal only to terbium as the most magnetic atom, are expected to exhibit a multitude of fascinating collisional dynamics and quantum dipolar phases, including quantum liquid crystal physics. We report the first laser cooling and trapping of half a billion Dy atoms using a repumper-free magneto-optical trap (MOT...
متن کاملHighly Axial Magnetic Anisotropy in a N3 O5 Dysprosium(III) Coordination Environment Generated by a Merocyanine Ligand.
A spiropyran-based switchable ligand isomerizes upon reaction with lanthanide(III) precursors to generate complexes with an unusual N3 O5 coordination sphere. The air-stable dysprosium(III) complex shows a hysteresis loop at 2 K and a very strong axial magnetic anisotropy generated by the merocyanine phenolate donor.
متن کاملAn NCN-pincer ligand dysprosium single-ion magnet showing magnetic relaxation via the second excited state
Single-molecule magnets are compounds that exhibit magnetic bistability purely of molecular origin. The control of anisotropy and suppression of quantum tunneling to obtain a comprehensive picture of the relaxation pathway manifold, is of utmost importance with the ultimate goal of slowing the relaxation dynamics within single-molecule magnets to facilitate their potential applications. Combine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 13 42 شماره
صفحات -
تاریخ انتشار 2011